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Supplementary Material:
Multi-Manifold Optimization for Multi-View

Subspace Clustering
Aparajita Khan and Pradipta Maji

The main article introduces a manifold optimization based
multi-view data clustering algorithm, termed as MiMIC
(Multi-Manifold Integrative Clustering). In this document,
Section S1 presents the proofs of Theorems 1 and 2 of the
main paper. Section S2 theoretically proves the convergence of
the proposed algorithm stated in Theorem 3 of the main paper,
and the asymptotic convergence bound obtained in Theorem 4.
Section S3 discusses the choice of convex combination used in
this work to construct the joint Laplacian. The computational
complexity of the proposed algorithm is reported in Section
S4. A brief description of the benchmark and multi-omics data
sets used in this work is provided in Section S5. Additional
results on synthetic, benchmark, and multi-omics data sets are
given in Section S6. Section S7 provides the definitions of
four cluster evaluation indices used in this work to compare
the performance of different algorithms.

S1. PROOF OF THEOREM 1 AND THEOREM 2

This section presents the proofs of Theorems 1 and 2 of
the main paper. The theorems establish that at each iteration,
the next iterates U (t+1)

Joint and U (t+1)
j obtained by the proposed

MiMIC algorithm belong to their respective manifolds.

Theorem 1. U (t+1)
Joint belongs to the k-means manifold.

Proof. For U (t+1)
Joint to belong to k-means manifold, denoted

by Km, it must satisfy its properties given in (5) of the main
paper. So, U (t+1)

Joint must have orthonormal columns:(
U

(t+1)
Joint

)T
U

(t+1)
Joint (from (15) of main paper)

=
(

exp(B) exp(Q′)U
(t)
Joint

)T(
exp(B) exp(Q′)U

(t)
Joint

)
=
(
U

(t)
Joint

)T
exp(Q′)T exp(B)T exp(B) exp(Q′)U

(t)
Joint

=
(
U

(t)
Joint

)T
exp(−Q′) exp(−B) exp(B) exp(Q′)U

(t)
Joint

=
(
U

(t)
Joint

)T
U

(t)
Joint = Ir.
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It can be shown that U (t)
Joint

(
U

(t)
Joint

)T
commutes with exp(Q′)

[1] (see Lemma 1 for details). Hence,

exp(Q′)U
(t)
Joint

(
U

(t)
Joint

)T
= U

(t)
Joint

(
U

(t)
Joint

)T
exp(Q′).

Also, exp(B)1 = exp(−B)1 = 1. So,

U
(t+1)
Joint

(
U

(t+1)
Joint

)T
1

=
(

exp(B) exp(Q′)U
(t)
Joint

)(
exp(B) exp(Q′)U

(t)
Joint

)T
1

= exp(B) exp(Q′)U
(t)
Joint

(
U

(t)
Joint

)T
exp(Q′)T exp(B)T1

= exp(B) exp(Q′)U
(t)
Joint

(
U

(t)
Joint

)T
exp(−Q′) exp(−B)1

= exp(B)U
(t)
Joint

(
U

(t)
Joint

)T
exp(Q′) exp(−Q′) exp(−B)1

= exp(B)U
(t)
Joint

(
U

(t)
Joint

)T
1 = exp(B)1 = 1.

Thus, the next iterate U (t+1)
Joint satisfies both the properties of

Km, and therefore, belongs to it.

Theorem 2. U (t+1)
j belongs to the Stiefel manifold.

Proof. For U (t+1)
j to belong to the Stiefel manifold, it must

satisfy its properties given by (11) of the main paper, that
is, it must have orthonormal columns. The matrices E(t+1)

j

and V (t+1)
j , given by (18) of the main paper, contain the left

and right singular vectors of Z(t+1)
j , respectively, which have

onrthonormal columns. Therefore,(
U

(t+1)
j

)T
U

(t+1)
j = V

(t+1)
j

(
E

(t+1)
j

)T
E

(t+1)
j

(
V

(t+1)
j

)T
= Ir.

Thus, the next iterate of Uj belongs to the Stiefel manifold.

In Theorem 1, the commutative property of

U
(t)
Joint

(
U

(t)
Joint

)T
and exp(Q′) is used to prove that

U
(t+1)
Joint belongs to the k-means manifold. The following

lemma proves the commutative property [1].

Lemma 1. U (t)
Joint

(
U

(t)
Joint

)T
commutes with exp(Q′).

Proof. The t-th iterate of UJoint belongs to the k-means man-
ifold. So, from the properties of k-means manifold (defined in
(5) of the main paper), it satisfies that(

U
(t)
Joint

)T
U

(t)
Joint = Ir. (1)
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From (15) of the main paper, we have

Q′ = U
(t)
Joint Q

(
U

(t)
Joint

)T ∈ <n×n, (2)

where Q ∈ <r×r. The exponential of Q′ is given by [2]

exp(Q′) = In +Q′ +
Q′2

2!
+
Q′3

3!
+ . . . =

∞∑
j=0

Q′
j

j!
.

Now,

Q′ U
(t)
Joint

(
U

(t)
Joint

)T
= U

(t)
JointQ

(
U

(t)
Joint

)T
U

(t)
Joint

(
U

(t)
Joint

)T
(from (2))

= U
(t)
Joint

(
U

(t)
Joint

)T
U

(t)
JointQ

(
U

(t)
Joint

)T
(from (1))

= U
(t)
Joint

(
U

(t)
Joint

)T
Q′. (3)

Therefore,

exp(Q′) U
(t)
Joint

(
U

(t)
Joint

)T
=

(
In +Q′ +

Q′2

2!
+
Q′3

3!
+ . . .

)
U

(t)
Joint

(
U

(t)
Joint

)T
(applying (13) repetatively)

= U
(t)
Joint

(
U

(t)
Joint

)T (
In +Q′ +

Q′2

2!
+
Q′3

3!
+ . . .

)
= U

(t)
Joint

(
U

(t)
Joint

)T
exp(Q′).

Hence, U (t)
Joint

(
U

(t)
Joint

)T
commutes with exp(Q′).

S2. CONVERGENCE ANALYSIS

The proposed MiMIC algorithm for multi-view data clus-
tering is provided in Algorithm 3 of the main article. To
prove its convergence, certain restrictions are imposed on the
descent direction and choice of step size during optimization.
Before discussing the convergence result and analyzing its
asymptotic behavior, the retraction operation on a manifold
(stated in Section III-B of the main article) and some important
definitions are briefly stated below.

Given a manifold M, a point y ∈ M, let TyM denote
the tangent space of the manifold rooted at point y. Given a
tangent ξ ∈ TyM, the retraction operation Ry(ξ) denotes the
combination of two steps. First, movement along ξ to get the
point y+ξ in the tangent space. Second, projection of the point
y+ξ back to the manifoldM. For minimization of a function
f(y) over M, given the current iterate y(t) at iterarion t, the
update equation for line-search [3] on M is given by

y(t+1) = Ry(t)(ηd (t)),

where d (t) is a descent direction and η is the step length.
For the proposed MiMIC algorithm, while optimizing the joint
objective f with respect to UJoint over the k-means manifold

Km, the set of update equations is given by (Section III-B1
of the main paper)

Q
(t)
Joint = −∇

U
(t)
Joint

f

Z
(t)
Joint = ΠT

U
(t)
Joint

Km

(
Q

(t)
Joint

)
Z

(t+1)
Joint = U

(t)
Joint + ηZ

(t)
Joint

U
r(t+1)
Joint = PKm

U
(t)
Joint

(
Z

(t+1)
Joint

)
,

(4)

where U (t)
Joint denotes the value of UJoint at iteration t. The

set of equations in (4) can be coupled using the retraction
operation R and written as

U
(t+1)
Joint = RKm

U
(t)
Joint

(
−η∇

U
(t)
Joint

f
)
, (5)

where RKm denotes retraction on the k-means manifold.
Some definitions related to the choice of descent direction

and step length for the proposed MiMIC algorithm are stated
next.

A. Background

Definition 1 (Gradient-related sequence). Given a cost
function f on a Riemannian manifold M, a sequence

{
ξ(t)
}

,
where ξ(t) ∈ Ty(t)M, is gradient-related if, for any sub-
sequence

{
y(t)
}
t∈τ of

{
y(t)
}

that converges to a non-
critical point of f , the corresponding subsequence

{
ξ(t)
}
t∈τ

is bounded and satisfies

lim sup
t→∞, t∈τ

〈
∇f(y(t)), ξ(t)

〉
< 0.

Here, 〈., .〉 denotes the inner product. For a function f , descent
direction at a point y refers to a vector moving along which
leads to a reduction of the function. A direction ξ is a descent
direction if the directional derivative along ξ is negative, that
is,

〈∇f(y), ξ〉 < 0.

Definition 1 implies that a sequence of directions
{
ξ(t)
}

on
the tangent space of M is gradient related if it contains a
subsequence of descent directions of f . Thus, moving along
a gradient-related sequence at each iteration would lead to a
reduction of the function f .

To ensure the convergence of the proposed algorithm, the
Armijo condition [4] is imposed on the choice of step size
during the optimization. The condition is defined as follows:

Definition 2 (Armijo criterion). Given a cost function f on
a Riemannian manifoldM with retraction R, a point y ∈M,
a tangent vector ξ ∈ TyM, and scalars η̄ > 0 and σ ∈
(0, 1), the step length η̄ is said to satisfy the Armijo condition
restricted to the direction ξ if the following inequality holds:

f(y)− f
(
Ry(η̄ξ)

)
≥ −ση̄

〈
∇f(y), ξ

〉
. (6)

The Armijo condition is a popular line-search condition that
states that the reduction in f , given by f(y) − f

(
Ry(η̄ξ)

)
,

should be proportional to both the step length η̄ and the
directional derivative

〈
∇f(y), ξ

〉
, where σ ∈ (0, 1) is the

constant of proportionality.
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Fig. S1. Armijo condition for the choice of step size.

Let f (t) denote the value of the objective function f

evaluated using U
(t)
Joint and U

(t)
j ’s, obtained at iteration t of

the proposed algorithm. For the proposed algorithm, the step
lengths for optimization on both the manifolds are chosen to
be identical, that is, ηK = ηS = η. Also, the direction of
movement on the tangent space is always the negative gradient
−∇f (as in (13) and (16) of the main paper), and the retracted
point from the tangent space gives the next iterate. Between
two consecutive iterations, the reduction in the objective
function f is given by f (t) − f (t+1). Inorder to satisfy the
Armijo criterion, this reduction must be proportional to the
directional derivative. This is evaluated using

CA = f (t) − f (t+1) + ση
〈
∇f ,−∇f

〉
. (7)

Here, CA ≥ 0 implies that the Armijo condition is satisfied
and there has been a sufficient reduction in the value of the
objective function. The proposed algorithm moves to the next
iterate only when the Armijo criterion is satisfied. The value
of Armijo parameter σ is set to 1e− 05 following [5].

Definition 3 (Armijo point). Given a cost function f on a
Riemannian manifoldM with retraction R, a point y ∈M, a
tangent vector ξ ∈ TyM, and scalars η̄ > 0, β, σ ∈ (0, 1), the
Armijo point is ξA = ηAξ = βω η̄ξ, where ω is the smallest
non-negative integer such that

f(x)− f
(
Ry(βω η̄ξ)

)
≥ −σ

〈
∇f(y), βω η̄ξ

〉
.

The real number ηA is called the Armijo step size [3].

The smallest step size that satisfies the Armijo condition is
called the Armijo step size ηA. It is given by ηA = βω η̄, such
that ω is the smallest non-negative integer to achieve this for
a given η̄ > 0 and β ∈ (0, 1). Fig. S1 shows an example of
the Armijo condition for choosing the step size. To choose a
step size that satisfies the Armijo condition, we start with a
step length η̄ > 0 and then check for the choices βη̄, β2η̄,
. . . , until βω η̄ falls under the set of acceptable step sizes that
satisfy (6). This choice of step size would give a sufficient
decrease in the value of the function f .

B. Proof of Convergence

The convergence analysis of the proposed MiMIC algorithm
(Algorithm 3 of the main paper) is as follows.

Theorem 3. Every limit point of the sequence
{U (t)

Joint}t=0,1,2,..., generated by the proposed algorithm
for a set of given Uj’s for j ∈ {1, ..,M}, is a critical point
of the cost function f .

Proof. (By contradiction) Let there be a subsequence of it-
erations

{
U

(t)
Joint

}
t∈τ that converges to some U?Joint which is

not a critical point of f , that is ∇U?
Joint

f 6= 0. The direction
of movement at each iteration is the negative gradient along
which the reduction of cost f is maximum. It follows that the
whole sequence

{
f
(
U

(t)
Joint

)}
is non-increasing and converges

to f
(
U?Joint

)
. So, the difference f

(
U

(t)
Joint

)
− f

(
U

(t+1)
Joint

)
goes

gradually to zero. The Armijo criterion CA, given by (7), is
evaluated at each iteration of the proposed MiMIC algorithm.
The algorithm proceeds to the next iteration only if CA ≥ 0.
The k-means manifold, over which UJoint is optimized, is
a Riemannian manifold with the inner product given by
〈Z1, Z2〉 = tr(ZT1 Z2) [1]. This relation can used to replace
the trace term in (7). Furthermore, for a set of given Uj’s for
j ∈ {1, ..,M}, f becomes a function of UJoint only. In that
case, the negative gradient becomes −∇

U
(t)
Joint

f = Q
(t)
Joint (see

(13) of the main paper). Using (4), the Armijo criterion CA
can be written as

CA = f
(
U

(t)
Joint

)
− f

(
RKm

U
(t)
Joint

(ηQ
(t)
Joint)

)
+ ση(t)

〈
∇
U

(t)
Joint

f ,Q
(t)
Joint

〉
.

(8)

The proposed MiMIC algorithm proceeds to the next iteration
only if CA ≥ 0, else it reduces the step size and checks again.
Now, CA ≥ 0 implies that at each iteration the proposed
algorithm satisfies

f
(
U

(t)
Joint

)
−f
(
RKm

U
(t)
Joint

(ηQ
(t)
Joint)

)
≥−ση(t)

〈
∇
U

(t)
Joint

f ,Q
(t)
Joint

〉
.

The direction of movement at each iteration is

Q
(t)
Joint = −∇

U
(t)
Joint

f

which implies that〈
∇
U

(t)
Joint

f ,Q
(t)
Joint

〉
= −‖∇

U
(t)
Joint

f‖2F < 0, (9)

where ‖ . ‖F deontes the Frobenius norm of a matrix.
Thus, the sequence movement directions {Q(t)

Joint} is gradient
related. Moreover, as

{
f
(
U

(t)
Joint

)}
is a convergent sequence,

this implies that the step lengths {η(t)}t∈τ → 0. As the
step lengths η(t)’s are determined from the Armijo rule, it
follows that for all t greater than some t̄, η(t) = βωtη,
where ωt is an integer greater than zero. Therefore, the update
η(t)

β = β(ωt−1)η does not satisfy the Armijo condition. So,

f
(
U

(t)
Joint

)
− f

(
RKm

U
(t)
Joint

(
η(t)

β
Q

(t)
Joint

))
< −ση

(t)

β

〈
∇
U

(t)
Joint

f ,Q
(t)
Joint

〉
, ∀t ∈ τ, t ≥ t̄.

(10)

Let

Q̂
(t)
Joint =

Q
(t)
Joint

‖Q(t)
Joint‖

and η̂(t) =
η(t)‖Q(t)

Joint‖
β

.
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For the function f over the manifold Km equipped with the
retraction RKm, let f̂ = f ◦ RKm denote the pullback of f
through RKm. For U ∈ Km,

f̂U = f ◦ RKmU

denote the restriction of f to the tangent space TUKm.
Denoting the zero element of tangent space TUKm by 0U ,
the inequality in (10) could be written as

f̂
U

(t)
Joint

(
0
U

(t)
Joint

)
−f̂

U
(t)
Joint

(
η̂(t)Q̂

(t)
Joint

)
η̂(t)

<−σ
〈
∇
U

(t)
Joint

f , Q̂
(t)
Joint

〉
,

(11)
∀t ∈ τ , where t ≥ t̄. The mean-value theorem is used to

replace the left-hand side of (11) by the directional derivative
of f̂ at point U (t)

Joint in the direction of Q̂(t)
Joint (see Chapter 3,

[3]). So, for some c ∈ [0, η̂(t)], (11) can be written as

−Df̂
U

(t)
Joint

(
cQ̂

(t)
Joint

)[
Q̂

(t)
Joint

]
<−σ

〈
∇
U

(t)
Joint

f , Q̂
(t)
Joint

〉
,

(12)
∀t ∈ τ , where t ≥ t̄. Since {η(t)}t∈τ → 0 and Q(t)

Joint is
gradient-related, hence bounded, it follows that {η̂(t)}t∈τ also
tends to 0. Moreover, as Q̂(t)

Joint has unit norm, the set of
unit norm vectors {Q̂(t)

Joint} belongs to a compact set. Every
sequence in a compact set converges to an element contained
within the set. So, there must exist a index set τ̂ ⊂ τ such that
{Q̂(t)

Joint}t∈τ̂ → Q̂?
Joint for some Q̂?

Joint having ‖Q̂?
Joint‖ = 1.

Taking limits in (12) over τ̂ , η̂(t) → 0, which implies that
c → 0 and Q̂(t)

Joint → Q̂?
Joint. Also, f is a continuous and

differentiable scalar field over the Riemannian manifold Km.
Therefore, from the definition of directional derivative D (see
(3.31) in Chapter 3, [3]), it satisfies that

Df̂
U

(t)
Joint

(0)
[
Q̂

(t)
Joint

]
=
〈
∇
U

(t)
Joint

f , Q̂
(t)
Joint

〉
.

Taking limits, (12) becomes

−
〈
∇U?

Joint
f , Q̂?

Joint

〉
< −σ

〈
∇U?

Joint
f , Q̂?

Joint

〉
. (13)

Since 0 < σ < 1, it follows from (13) that〈
∇U?

Joint
f , Q̂?

Joint

〉
> 0.

However, as {Q(t)
Joint} is gradient related, therefore〈

∇U?
Joint

f , Q̂?
Joint

〉
< 0 (from (9)), which is a contradiction.

Therefore, the subsequence of iterates
{
U

(t)
Joint

}
t∈τ converges

to some critical point of the objective function f .

C. Proof of Asymptotic Convergence Bound

The asymptotic behavior of the proposed MiMIC algorithm
is studied in Theorem 4 of the main paper, which theoretically
quantifies how fast the sequence of iterates generated by the
proposed MiMIC algorithm converges to an optimal solution.
For a sufficiently large value of t, Theorem 4 bounds the
difference between the objective function f evaluated at the
next iterate (t + 1) and at the optimal solution, in terms of
the difference between f evaluated at the current iterate t and
the optimal solution. This subsection proves the convergence
bound obtained in Theorem 4 of the main paper.

Let {U (t)
Joint}t=0,1,2,... be an infinite sequence of iterates

generated by Algorithm 3 of the main paper, for a set of given
{Uj}Mj=1. With the direction of movement being Q

(t)
Joint :=

−∇fJoint(t) , let the sequence {U (t)
Joint}t=0,1,... converge to

a point U?Joint, which is a critical point of f according to
Theorem 3. Let HÛ?

Joint
denote the Hessian matrix of f̂ at

the converged solution Û?Joint, and λH,min and λH,max be the
smallest and largest eigenvalues of the Hessian of HU?

Joint
f .

Assume that λH,min > 0 (hence U?Joint is a local minimizer
of f ). The asymptotic bound is stated as follows.

Theorem 4. There exists an integer t′ ≥ 0 such that

f
(
U

(t+1)
Joint

)
− f (U?Joint) ≤ c

(
f
(
U

(t)
Joint

)
− f (U?Joint)

)
,

for all t ≥ t′, where

c = 1− 2σλH,min min

(
η,

2β(1− σ)

λH,max

)
, (14)

where η is the step length, and σ and β are Armijo criterion
parameters.

Proof. Let (U , ϕ) be a chart of the manifoldM := Km(n, k),
with U?Joint ∈ U . Let the negative gradient of f at any
point U ∈ M be given by ζU := −∇f(U), where ζU
belongs to the tangent space TUM. Let coordinate ex-
pressions for different elements in the corresponding Eu-
clidean space <n×k be denoted with a hat. The follow-
ing notations are used for Euclidean space representations.

Û := ϕ(U) . indicates that coordinate map Û
in <n×k is equal to ϕ of U in M,

Û := ϕ(U) . similar to above notation, but for
the whole set U ,

f̂(Û) := f(U) . indicates that the value of f̂ at
Û ∈ <n×k is equal to the value of
f at U ∈M,

ζ̂Û := Dϕ(U)[ζU ] . ζ̂Û is the coordinate expression
corresponding to the directional
derivative in manifold M,

R̂Û (ζ̂) := ϕ(RU (ζ)) . the coordinate expression for the

retracted point in <n×k is given by
the mapping ϕ of the retracted
point RU (ζ) in M.

Let yÛ denote the Euclidean gradient of f̂ at Û , given by

yÛ =


∂11f̂(Û) ... ∂1kf̂(Û)

∂21f̂(Û) ... ∂2kf̂(Û)

...

∂n1f̂(Û) ... ∂nkf̂(Û)


n×k

(15)

Let GÛ denote the matrix representation of the Riemannian
metric g of M, in the coordinate space. Without loss of
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generality, we assume that the coordinate map of the critical
point is Û?Joint = 0 (the zero vector) and GÛ?

Joint
= In.

The main aim is to obtain, at a current iterate U , a suitable
upper bound on f(RU (tAζU )), where tA is the Armijo step
and tAζU is the Armijo point in tangent space TUM. The
Armijo condition implies that

f(U)− f(RU (tAζU )) ≥ −σ
〈
∇f(U), tAζU

〉
,

⇒ f(RU (tAζU )) ≤ f(U)− σ
〈
ζU , t

AζU
〉

≤ f(U)− σtA 〈ζU , ζU〉 . (16)

First a lower bound is obtained on 〈ζU , ζU〉 in terms of
f(U). Given a smooth scalar field f on Riemannian manifold
M, ζU denotes the negative gradient of f at U , given by
ζU := −∇f(U). The coordinate expression for ζU in <n×k
is given in terms of the Euclidean gradient yÛ and the matrix
representation of Riemannian metric G as follows (Section 3.6
in [3]):

ζ̂Û = G−1

Û
(−yÛ ).

Also, from (3.29) in [3],

〈ζU , ζU〉 = ζ̂ÛGÛ ζ̂Û = yÛG
−1

Û
yÛ

=‖ yÛ ‖2
(

1 +O(Û)
)
, (17)

as GÛ is assumed to be the identity matrix at the critical point
Û?Joint. From Taylor expansion of the Euclidean gradient yÛ ,
we have

∇f̂(Û?Joint + Û) = ∇f̂(Û?Joint) + HÛ?
Joint

Û +O(‖ Û ‖2),

⇒ yÛ = ∇f̂(Û) = H0 Û +O(‖ Û ‖2) (18)

(as Û?Joint = 0, so ∇f̂(Û?Joint) = 0, and from (15))

On the other hand, from the Taylor expansion of f̂ , we have

f̂(Û?Joint + Û) = f̂(Û?Joint) +
(
∇f̂(Û?Joint)

)T
Û

+
1

2
ÛT HÛ?

Joint
Û +O(‖ Û ‖3),

⇒ f̂(Û) = f̂(0) +
1

2
ÛT H0 Û +O(‖ Û ‖3). (19)

(applying Û?Joint = 0 and ∇f̂(Û?Joint) = 0)

It follows from (18) and (19) that

f̂(Û)− f̂(0) =
1

2
yT
Û

H−1
0 yÛ +O(‖ Û ‖3)

≤ 1

2

1

λH,min
‖ yÛ ‖, (20)

holds for all Û sufficiently close to Û?Joint. This is because,
in (20) above, λH,min denotes the minimum eigenvalue of
the Hessian of f̂ at Û?Joint, that is H0, and from the
properties of eigenvalues, we have that, for any vector v,
vTH−1

0 v ≤ (λH,min)−1. Therefore, from (17) and (20), it
can be concluded that

f(U)− f(U?Joint) ≤
1

2

1

λH,min
〈ζU , ζU〉 ,

⇒ 2λH,min (f(U)− f(U?Joint)) ≤ 〈ζU , ζU〉 . (21)

Thus, (21) gives the desired lower bound on 〈ζU , ζU〉. Using
the bound (21) in the Armijo condition (16) gives us that

f(RU (tAζU )) ≤ f(U)− σtA2λH,min (f(U)− f(U?Joint)) ,

⇒ f(Rx(tAζU ))− f(U?Joint)

≤
(
1− 2λH,minσt

A
)

(f(U)− f(U?Joint)) . (22)

Next a lower bound is obtained on the Armijo step size tA

to substitute in (22). Using the retraction operator R and the
of negative gradient ζU , we can define a smooth curve on the
manifold, from < toM, given by t→ RU (tζU ). This mapping
can be further used to define a smooth function h onM from
< to < with a well-defined classical derivative, given by

hU (t) = f (RU (tζU )) . (23)

The derivative of hU is given by (Sections 3.5.1, 3.5.2, and
3.6 of [3])

ḣU (t = 0) =
d

dt
f (RU (tζU ))

∣∣∣
t=0

= Df(U)[−ζU ]

= 〈∇f(U), ζU〉 = − 〈ζU , ζU〉 . (24)

Using (23) and (24) the Armijo condition (16) reads

hU (tA) ≤ hU (0) + σtAḣU (0). (25)

The Taylor expansion of hU gives us that

hU (t) = hU (0) + tḣU (0) + t2
ḧU (0)

2
.

The t at which the left- and right-hand sides of (25) are equal
is given by

hU (0) + tḣU (0) + t2
ḧU (0)

2
= hU (0) + σtḣU (0),

⇒ t
ḧU (0)

2
= −ḣU (0) + σḣU (0),

⇒ t =
−2(1− σ)ḣU (0)

ḧU (0)
.

(26)

Using t in (26) and the definition of Armijo point (Definition
3 and Section 4.2 of [3]), the step size tA that satisfies (22)
has the following lower bound

tA ≥ min

(
η,
−2β(1− σ)ḣU (0)

ḧU (0)

)
, (27)

where η̄ and β are Armijo step size parameters. The second
derivative ḧu is given by

ḧU (t = 0) =
d2

dt2
f (RU (tζU ))

∣∣∣
t=0

= D2f(x)[−ζU ]

= (−ζU )TH0(−ζU ) = H0 ‖ ζU ‖2 . (28)

From properties of eigenvalues, we have that for any vector
v, vTH0v ≤ λH,max. Therefore, using (24) and (28) in (27)
gives that

tA ≥ min

(
η,

2β(1− σ)

λH,max

)
, (29)

for all U sufficiently close to U?Joint. Using the lower bound
(29) in (22) gives

f(RU (tAζU ))− f(U?Joint) ≤ c (f(U)− f(U?Joint)) (30)
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where

c = 1− 2σλH,min min

(
η,

2β(1− σ)

λH,max

)
. (31)

In (30), tA is the Armio step size corresponding to the Armijo
point. When the next iterate U (t+1)

Joint is the Armio point, then
the decrease in the value of the objective function from U

(t)
Joint

to U
(t+1)
Joint is σ times the directional derivative at U (t)

Joint. In
Algorithm 3, the next iterate is

U
(t+1)
Joint = R

U
(t)
Joint

(
tζ
U

(t+1)
Joint

)
, (32)

where t satisfies the Armijo condition, that is, with step length
t, the decrease in the value of the objective function is greater
than or equal to σ times the directional derivative at U (t)

Joint.
Hence using (32) in (30), we get

f(U
(t+1)
Joint )− f(U?Joint) ≤ c

(
f(U

(t)
Joint)− f(U?Joint)

)
,

where c is given by (31).

S3. CHOICE OF CONVEX COMBINATION

The Fiedler value of a graph G, denoted by λ2, refers
to the second largest eigenvalue of its Laplacian L defined
according to (2) of the main paper. It indicates the separability
of the graph into two component subgraphs. Higher Fiedler
value is indicative of easier separability. The corresponding
eigenvector, say u2, called the Fiedler vector, can be used to
partition the vertices of G [6]. One popular way is to apply the
2-means algorithm on u2 to obtain 2-way partition of graph G.
The Silhouette index [7] can then internally assess the quality
of this partition. Let S(u2) denote the value of the Silhouette
index evaluated on a 2-partition of the Fiedler vector u2. A
higher value of this index indicates a better partition. A view
with good cluster information is expected to have a higher
Fiedler value as well as higher Silhouette index on the Fiedler
vector. The “relevance” of a view Xm is defined by [8]

χm =
1

4
λm2 [S(um2 ) + 1] , (33)

where λm2 is the second largest eigenvalue of its Laplacian Lm
and um2 is the corresponding eigenvector. The value of χ lies
within [0, 1] and a higher value of χm implies better cluster
structure. Thus, a linear ordering of the views can be obtained
based on the relevance. Let X(1), . . . , X(m), . . . , X(M) be the
ordering of X1, . . . , Xm, . . . , XM based on decreasing value
of relevance χ.

In the convex combination vector α of (7) of the main paper,
the component α(m) represents the weighting factor of view
X(m) and is given by [8]

α(m) = χ(m)∆
−m, where ∆ ≥ 1. (34)

This implies that based on the index of X(m) in the ordering
X(1), . . . , X(M), the relevance value of X(m) is damped by
a factor of ∆m and then used as its contribution in the
convex combination α. Thus, in α, the most relevant view
has contribution of χ(1)

∆ , while the second most relevant one
contributes χ(2)

∆2 , and so on. This assignment of α upweights
views with better cluster structure, while dampens the effect

of those having poorer structure. In this work, the value of ∆
is empirically set to 1 for the benchmark and synthetic data
sets, and 2 for the multi-omics data sets.

S4. COMPUTATIONAL COMPLEXITY

Let X1, . . . , Xm, . . . , XM , where Xm ∈ <n×dm , be M
different views of a multi-view data set, all measured on the
same set of n samples. The number of clusters in the data
set is assumed to be known and is denoted by k, and let
r be the rank of joint and individual subspaces, UJoint and
Ujs, which is given as input to the proposed Algorithm 3 of
the main paper. Given the similarity matrix Wm for modality
Xm, its graph Laplacian Lm is computed in step 2 in O(n2)
time. Then, the eigen-decomposition of Lm is computed in
step 3 which takes O(n3) time for the (n × n) matrix. The
computation of relevance χm in step 5 involves computation
of Silhouette index which has pair-wise distance computation
and takes O(n2) time. For M views, the total complexity
of steps 1−6 is bounded by O(Mn3). The computation
of joint Laplacian and its eigen-decomposition in steps 7
and 8, respectively, takes atmost O(n3) time. Steps 9−10
are initializations, which take constant time. For a fixed j,
optimization of Uj over Stiefel manifold takes O(n2r) time.
The loop for j in step 12 runs once for each of the M views,
which contributes to a total complexity of O(Mn2r) for steps
12−14. The optimization of UJoint over k-means manifold
in step 15 has O(n3) time complexity due to the matrix
exponential based retraction operation. The computation of the
joint objective in step 16 takes O(Mn2r) time. The evaluation
of convergence criteria and variable updation in steps 17−21
takes O(1) time. Assuming that the algorithm takes t iterations
to converge, the overall complexity of steps 11−22 is bounded
by O(tmax{n3,Mn2r}). The clustering on the final solution
U?Joint in step 24 takes O(tkmnk

2) time, where tkm is the
maximum number of iterations k-means clustering executes.

Hence, the overall computational complexity of the pro-
posed MiMIC algorithm, to extract the subspace U?Joint

and perform clustering, is (O(Mn3 + tmax{n3,Mn2r} +
tkmnk

2) =)O(tn3), assuming M, r, k << n.

S5. DESCRIPTION OF DATA SETS

This section presents the description of five benchmark data
sets and four multi-omics cancer data sets, which are used in
this work.

A. Benchmark Data Sets

Five benchmark data sets from different application domains
like information retrieval, handwritten digits identification, and
object detection are considered in this work. The data sets are
briefly described as follows.

i. Digits: This data set consists of features of handwritten
numerals (‘0’-‘9’) extracted from a collection of Dutch
utility maps with 200 patterns per class (for a total of
2,000 patterns), digitized in the form of binary images.
The data set is publicly available at https://archive.ics.
uci.edu/ml/datasets/Multiple+Features. The samples are
represented in terms of the following six feature sets:

https://archive.ics.uci.edu/ml/datasets/Multiple+Features
https://archive.ics.uci.edu/ml/datasets/Multiple+Features
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a) mfeat-fou: 76 Fourier coefficients corresponding to the
character shapes.

b) mfeat-fac: 216 profile correlations.
c) mfeat-kar: 64 Karhunen-Love coefficients.
d) mfeat-pix: 240 pixel averages in 2 x 3 windows.
e) mfeat-zer: 47 Zernike moments.
f) mfeat-mor: 6 morphological features.

ii. 3Sources: This is a multi-view text data set available
at http://mlg.ucd.ie/datasets/3sources.html. It consists of
169 news articles collected from three well-known online
news sources: BBC, Reuters, and The Guardian, from
the period February to April 2009. Each news article
story was manually annotated with one or more of the
six topical labels: business, entertainment, health, politics,
sport, and technology. The labels roughly correspond to
the primary section headings used across the three news
sources. The data set has three views, one corresponding
of each of the three news sources.

iii. BBC: This is also a multi-view news article clustering
data set constructed from the single-view BBC news cor-
pora http://mlg.ucd.ie/datasets/segment.html. It consists of
685 news documents. Each raw document was split into
four segments by separating the documents into para-
graphs, and merging sequences of consecutive paragraphs.
The segments for each document were then randomly
assigned to views. Each document is annotated with
one of the five topical labels: business, entertainment,
politics, sport, and technology. The data set has four views
corresponding to the four segments.

iv. 100Leaves: It is a one-hundred plant species leaves data
set https://archive.ics.uci.edu/ml/datasets/One-hundred+
plant+species+leaves+data+set. The data set consists of
1,600 samples, with sixteen samples of each type of leaf
for each of the one-hundred plant species. Each sample
is represented by three sets of image features: shape
descriptors, fine scale margin, and texture histogram.

v. ALOI: This is the Amsterdam Library of Object
Image data set http://elki.dbs.ifi.lmu.de/wiki/DataSets/
MultiView. The data set is from the work of [9]. The
data set consists of 11,025 images of 100 small objects.
Each image is represented with four types of features,
that is, RGB color histogram, HSV color histogram, color
similiarity and Haralick features.

B. Multi-Omics Data Sets

Four real-life multi-omics cancer data sets, from The Cancer
Genome Atlas (TCGA) (https://cancergenome.nih.gov/), are
used in this study, namely, lower grade glioma (LGG), stomach
adenocarcinome (STAD), breast invasive carcinoma (BRCA),
and lung carcinoma (LUNG). Four genomic views considered
for these data sets are DNA methylation (mDNA), gene
expression (RNA), miRNA expression (miRNA), and reverse
phase protein array expression (RPPA). The cancer data sets
are downloaded from https://portal.gdc.cancer.gov/. The four
TCGA data sets used in this study are described as follows:

i. Lower-grade glioma (LGG): This is a type of brain
tumor originating from glial the cells of the brain. Diffuse

low-grade and intermediate-grade gliomas which together
make up the lower-grade gliomas have highly variable
clinical behaviour that is not adequately predicted on the
basis of histological class. Integrative analysis of data
from RNA, DNA-copy-number, and DNA-methylation
platforms has uncovered three prognostically significant
subtypes of lower-grade glioma [10]. The LGG data set
consists of 267 samples. The first subtype has 134 samples
which exhibit IDH mutation and no 1p/19q codeletion.
The second subtype exhibits both IDH mutation and
1p/19q codeletion and has 84 samples. The third one is
called the wild-type IDH subtype and has 49 samples.

ii. Stomach adenocarcinoma (STAD): Stomach/gastric can-
cer was the worlds third leading cause of cancer mortality
in 2012, responsible for 723,000 deaths [11]. TCGA
research network has proposed a molecular classification
dividing gastric cancer into four subtypes [12]. The STAD
data set has 242 samples which consists of 54 samples
from microsatellite unstable tumours, which show ele-
vated mutation rates, 21 samples of tumours showing
positivity for EpsteinBarr virus, 119 samples of tumours
having chromosomal instability, and 48 samples of ge-
nomically stable tumors.

iii. Breast invasive carcinoma (BRCA): Breast cancer is one
of the most common cancers with greater than 1,300,000
cases and 450,000 deaths each year worldwide [13].
During the last 15 years, four intrinsic molecular subtypes
of breast cancer, namely, Luminal A, Luminal B, HER2-
enriched, and Basal-like subtypes have been identified and
intensively studied [13], [14], [15]. The BRCA data set
consists of 398 samples comprising of 171, 98, 49, and
80 samples of LuminalA, LuminalB, HER2-enriched, and
Basal-like subtype, respectively.

iv. Lung Carcinoma (LUNG): Based on the primary site
of origin, lung cancer set can be categorized in two
subtypes, namely, adenocarcinoma and squamous cell
carcinoma. These were also the two major subtypes of
lung cancer in 2015 WHO classification [16]. The LUNG
data set consists of 671 samples with 360 samples of lung
adenocarcinoma and 311 samples of lung squamous cell
carcinoma.

S6. EXPERIMENTAL RESULTS AND DISCUSSION

For the existing algorithms on benchmark data sets, results
reported in their original papers and in [17] (which also com-
pares the performance of the existing algorithms on the same
data sets) are used. For the omics data sets, original imple-
mentations of the existing approaches were obtained from the
authors and executed at their default parameter settings. The
experimental setup for the existing algorithms on multi-omics
cancer data sets is provided in the supplementary material
of [8]. This section empirically establishes the significance
of the asymptotic convergence bound obtained in Section IV
of the main paper. Experimental results that demonstrate the
importance of multi-view integration over uni-view analysis,
along with the results on four additional benchmark data sets,
are also provided.

http://mlg.ucd.ie/datasets/3sources.html
http://mlg.ucd.ie/datasets/segment.html
https://archive.ics.uci.edu/ml/datasets/One-hundred+
plant+species+leaves+data+set
http://elki.dbs.ifi.lmu.de/wiki/DataSets/MultiView
http://elki.dbs.ifi.lmu.de/wiki/DataSets/MultiView
https://cancergenome.nih.gov/
https://portal.gdc.cancer.gov/
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TABLE S1
PERFORMANCE ANALYSIS OF PROPOSED ALGORITHMS ON SYNTHETIC CLUSTERING DATA SETS

Data Sets� Aggregation Compound Pathbased Spiral Jain Flame R15 D31

No. of Samples 788 399 300 312 373 240 600 3100
No. of Clusters 7 6 3 3 2 2 15 31
Accuracy 0.99619 0.89473 0.83000 1.00 1.00 0.98750 0.99500 0.82032
NMI 0.98839 0.89671 0.63926 1.00 1.00 0.89905 0.99135 0.91780
ARI 0.99198 0.92926 0.58486 1.00 1.00 0.95014 0.98921 0.68092
F-measure 0.99622 0.91264 0.81500 1.00 1.00 0.98748 0.99497 0.85341
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Fig. S2. Two-dimensional scatter plots of three synthetic shape data sets: ground truth clustering (top row) and MiMIC clustering (bottom row). Clustering
accuracy:- (a) Flame: 1.00, (b) Pathbased: 0.83, (c) R15: 0.995.

A. Results on Synthetic Data Sets

The results on five two-dimensional synthetic shape data
sets are reported in Section V-B and Fig. 2 of the main
paper. The quantitative results on those data sets, in terms
of accuracy, adjusted rand index (ARI), normalized mutual
information (NMI), and F-measure are reported in Table S1.
Apart from the five synthetic data sets used in main paper,
Table S1 also reports the results on three additional shape data
sets, namely, Flame, Pathbased, and R15. These data sets are
also available at http://cs.joensuu.fi/sipu/datasets/, along with
the five other data sets used in the main paper. The scatter plots
for the additional three data sets are provided in Fig. S2 for
visual analysis. The results in Table S1 show that the proposed
algorithm achieves perfect or nearly perfect clustering on five
data sets, namely, Spiral, Jain, Aggregation, R15, and Flame.
For other three data sets, the clustering performance is quiet
high, with clustering accuracy above 0.8. The scatter plots
in Fig. S2(b) show that for the Pathbased data set, the sur-
rounding cluster marked in red has become mixed up with the
interior green and blue clusters through the boundary points,
resulting in reduced performance. However, for Flame and
R15 data sets, Figs. S2(a) and S2(c) show that the proposed
algorithm has achieved nearly perfect clustering. Several shape
data sets studied in this work lack linearly separable cluster
patterns. The results in Table S1, Fig. S2, and Fig. 2 of
the main paper demonstrate that the proposed algorithm can
efficiently identify non-linearly separable clusters.

B. Significance of Asymptotic Convergence Bound

The asymptotic convergence bound obtained in Theorem
4 of the main paper indicates how fast the sequence of
iterates generated by the proposed algorithm converges to an
optimal solution of a given data set. For a sufficiently large
value of iteration number t, Theorem 4 bounds the difference
between the cost function f evaluated at U (t+1)

Joint and at the
optimal solution U?Joint in terms of the difference between that
evaluated at U (t)

Joint and U?Joint. Let γt be given by the ratio

γt =
f
(
U

(t+1)
Joint

)
− f (U?Joint)

f
(
U

(t)
Joint

)
− f (U?Joint)

. (35)

Theorem 4 states that for all t greater or equal to some t′,
γt ≤ c, where c is given by (14). The convergence factor
c can be used to make inference about the underlying cluster
structure of the data set. As discussed in Section IV of the main
paper, a value of c close to 1 indicates poor separation between
the clusters present in the data set, while a value much lower
than 1 indicates well-separated clusters. To experimentally
establish this, multiple noisy data sets are generated from the
synthetic shape data sets used in this work, by adding Gaussian
noise of mean 0 and standard deviations 0.5, 1, and 1.5.
Experiments are performed on noise-free and noisy variations
of four shape data sets from http://cs.joensuu.fi/sipu/datasets/,
namely, Spiral, Jain, R15, and Compound. The scatter plots
for the noise-free and noisy variants of Spiral, Jain, R15, and

http://cs.joensuu.fi/sipu/datasets/
http://cs.joensuu.fi/sipu/datasets/
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Fig. S3. Asymptotic convergence analysis for Spiral data set: scatter plot of data with varying Gaussian noise (top row) and variation of convergence ratio
and objective function with increase in iteration number t (bottom row).
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Fig. S4. Asymptotic convergence analysis for Jain data set: scatter plot of data with varying Gaussian noise (top row) and variation of convergence ratio
and objective function with increase in iteration number t (bottom row).

Compound data sets are provided in the top rows of Fig. S3,
S4, S5, and S6, respectively. As stated in Section V-A1 of
the main paper, for each variant of each data set two views
are generated using k-nearest neighbors and Gaussian kernel.
Starting from a random initial iterate, the variation of γt and
the cost function f

(
U

(t)
Joint

)
is observed for different values

of t = 1, 2, 3, . . ., until convergence. The variation of γt and
f
(
U

(t)
Joint

)
along with the corresponding value of convergence

factor c is provided in the bottom rows of Fig. S3, S4, S5, and
S6 for Spiral, Jain, R15, and Compound data sets, respectively.
The value of the bound c is marked by a horizontal dashed
green line in these figures.

For all the data sets, the top rows of Fig. S3, S4, S5, and S6
show that the cluster structure and their separability degrades
with the increase in noise, as expected. The bottom rows
of these figures in turn show that with increase in noise in
the data sets, the value of the convergence factor c increases
and goes close to 1. For instance, for the Spiral data set, the
value of c for the noise-free original data set in Fig. S3(a) is
0.5432315, while that for the three increasingly noisy variants
in Figs. S4(b), S4(c), and S4(d) are 0.8995148, 0.9298075, and
0.9569399, respectively. Similar observations can be made for
Jain, R15, and Compound data sets as well from the bottom
rows of Figs. S4, S5, and S6, respectively. Although the results
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Fig. S5. Asymptotic convergence analysis for R15 data set: scatter plot of data with varying Gaussian noise (top row) and variation of convergence ratio
and objective function with increase in iteration number t (bottom row).
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Fig. S6. Asymptotic convergence analysis for Compound data set: scatter plot of data with varying Gaussian noise (top row) and variation of convergence
ratio and objective function with increase in iteration number t (bottom row).

are sensitive to the added noise and the choice of the random
initial iterate, in general, it can be observed that lower values
of c implies faster convergence. For instance, the bottom rows
of Figs. S3, S4, S5, and S6 show that for all four data sets, the
proposed algorithm converges in lesser number of iterations in
the noise-free case compared to the noisy ones. The value of
the iteration threshold t′, above which the asymptotic bound
is satisfied by all the iterations until convergence, is marked
by a dashed vertical line in the figures. In general, it can
be observed from Figs. S3, S4, S5, and S6 that for all data
sets, as noise increases, the value of t′ decreases implying a
longer path until convergence. In brief, the results show that

the convergence bound c can be used to make inference about
the quality of the clusters and the speed of convergence of the
proposed algorithm, for a given data set.

C. Importance of Data Integration

The proposed algorithm integrates information by optimiz-
ing a joint clustering objective while reducing the disagree-
ment between the joint and individual subspaces. To study
the importance of information integration, the performance
of the proposed algorithm is compared with that of spectral
clustering on the individual views. The comparative results are
reported in Tables S2 and S3 for the benchmark data sets, and
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TABLE S2
PERFORMANCE ANALYSIS OF INDIVIDUAL VIEWS AND MIMIC ALGORITHM ON DIGITS DATA SET

Views� Fac Fou Kar Mor Pix Zer MiMIC

Digits

Accuracy 0.5614(9.66e-4) 0.7096(7.74e-4) 0.6638(4.83e-4) 0.5109(2.10e-4) 0.6520(0.00) 0.5350(0.00) 0.9207(4.21e-4)
NMI 0.6192(1.25e-3) 0.6443(3.96e-4) 0.6407(5.78e-4) 0.5361(1.80e-4) 0.6385(0.00) 0.4766(0.00) 0.8597(4.88e-4)
ARI 0.4731(1.23e-3) 0.5416(9.25e-4) 0.5383(9.10e-4) 0.3723(2.84e-4) 0.5216(0.00) 0.3286(0.00) 0.8352(8.18e-4)
F-measure 0.6453(9.44e-4) 0.7206(6.96e-4) 0.7023(3.96e-4) 0.5650(2.82e-4) 0.6829(0.00) 0.5544(0.00) 0.9209(4.15e-4)

TABLE S3
PERFORMANCE ANALYSIS OF INDIVIDUAL VIEWS AND PROPOSED MIMIC ALGORITHM FOR BENCHMARK DATA SETS

Views� Segment1 Segment2 Segment3 Segment4 MiMIC Shape Texture Margin MiMIC

Accuracy

B
B

C

0.6202(2.1e-3) 0.6202(3.6e-2) 0.6102(3.6e-2) 0.5550(3.0e-3) 0.8715(0.0)

10
0L

ea
ve

s 0.3095(9.1e-3) 0.4777(1.4e-2) 0.5786(1.1e-2) 0.8185(1.5e-2)
NMI 0.4312(1.7e-3) 0.4459(5.7e-2) 0.4097(1.3e-3) 0.4033(8.2e-3) 0.7182(�0) 0.6479(6.7e-3) 0.7327(5.6e-3) 0.7940(4.4e-3) 0.9302(4.1e-3)
ARI 0.3405(6.6e-2) 0.3895(8.9e-2) 0.3429(7.0e-3) 0.2518(1.1e-2) 0.7273(0.0) 0.1820(5.8e-3) 0.3265(1.4e-2) 0.4478(9.8e-3) 0.7431(2.5e-2)
F-measure 0.6514(1.2e-2) 0.6363(3.9e-2) 0.6435(1.2e-2) 0.6205(3.0e-3) 0.8613(0.0) 0.3525(7.4e-3) 0.5139(1.1e-2) 0.6113(9.7e-3) 0.8492(1.1e-2)

Views� RGB HSV Haralick ColorSimilarity MiMIC BBC Guardian Reuters MiMIC

Accuracy

A
L

O
I 0.4215(1.1e-2) 0.4433(7.0e-3) 0.1001(2.3e-3) 0.5191(1.1e-2) 0.5742(7.4e-3)

3S
ou

rc
es 0.7159(0.0) 0.6508(0.0) 0.5562(0.0) 0.7360(5.9e-2)

NMI 0.7179(3.9e-3) 0.7093(5.1e-3) 0.3659(4.1e-3) 0.7683(4.9e-3) 0.7805(2.3e-3) 0.6390(0.0) 0.5270(0.0) 0.5347(0.0) 0.6433(3.5e-2)
ARI 0.2915(1.4e-2) 0.2979(1.9e-2) 0.0550(6.8e-4) 0.3745(2.2e-2) 0.4233(6.6e-3) 0.6082(0.0) 0.4119(0.0) 0.41434(0.0) 0.5957(6.6e-2)
F-measure 0.4789(1.0e-2) 0.5136(7.9e-3) 0.1209(1.5e-3) 0.5843(1.1e-2) 0.6221(4.9e-3) 0.7656(0.0) 0.7036(0.0) 0.6482(0.0) 0.7581(5.0e-2)

TABLE S4
PERFORMANCE ANALYSIS OF INDIVIDUAL VIEWS AND PROPOSED MIMIC ALGORITHM FOR MULTI-OMICS DATA SETS

Views� mDNA RNA miRNA RPPA MiMIC mDNA RNA miRNA RPPA MiMIC

Accuracy

L
G

G

0.8352060 0.5917603 0.4307116 0.3970037 0.9625468

ST
A

D

0.5413223 0.4793388 0.3719008 0.4173554 0.7727273
NMI 0.5734568 0.2176187 0.0498676 0.0254500 0.8543905 0.2282198 0.1779419 0.0771419 0.0831100 0.5220123
ARI 0.5567870 0.1801875 0.0510240 0.0238319 0.8790253 0.1927570 0.1047749 0.0514998 0.0460928 0.4650334
F-measure 0.8269248 0.5875701 0.4717221 0.4326018 0.9623406 0.5469686 0.4781377 0.3998266 0.4469459 0.7830757

Accuracy

B
R

C
A 0.5804020 0.7688442 0.4623116 0.4798995 0.7964824

L
U

N
G 0.8107303 0.9359165 0.8241431 0.5037258 0.9463487

NMI 0.3408150 0.5277072 0.1947561 0.3140984 0.5553836 0.2980508 0.6631276 0.3575188 0.0001449 0.7173075
ARI 0.3047769 0.5130244 0.1663564 0.2359641 0.5474472 0.3852741 0.7597207 0.4193820 -0.001743 0.7965891
F-measure 0.5982526 0.7690661 0.5105008 0.5630781 0.7997020 0.8104506 0.9357307 0.8237679 0.5630053 0.9461134

in Table S4 for the multi-omics cancer data sets. The results
in Tables S2 and S3, clearly show that for four benchmark
data sets, namely, Digits, BBC, ALOI, and 100Leaves, there
is significant improvement in performance of the proposed
MiMIC algorithm considering multiple views over any single
view clustering. For the 3Sources data set, there is smaller
improvement in terms of NMI and accuracy, and the single
view BBC news source gives the best performance in terms
of ARI and F-measure. In case of the multi-omics data sets,
Table S4 shows that for all four data sets, the proposed
algorithm achieves the best clustering performance across all
four evaluation indices. The performance gain is most evident
for LGG and STAD data sets. Gene or RNA expression is the
most relevant view for BRCA and LUNG data sets, while
for LGG and STAD data sets it is DNA-methylation. For
BRCA and LUNG data sets, the clustering performance of
RNA expression is very close to that of the proposed multi-
view algorithm. Evidently, most of the initial works of cancer
subtype identification were based on gene expression study
[15], [18].

The scatter plots of the first two dimensions of the subspaces
extracted by the individual views and the proposed algorithm
are given in Fig. S7 for two benchmark data sets: 3Sources
and BCC, and in Fig. S8 for two multi-omics data sets: LGG

and STAD, as examples. The objects in these figures are
colored according to the ground truth or previously established
TCGA cancer subtypes. The scatter plots for the individual
views in Fig. S7 and S8 demonstrate the diversity of cluster
structures exhibited by the views. The scatter plots for the
proposed algorithm in Figs. S7(d) (top row), S7(e) (bottom
row), and S8(e) (top row) demonstrate significantly higher
cluster separability compared to any of their individual views
for 3Sources, BBC, and LGG data sets, respectively. The
distinct omic views may exhibit disparate cluster structures,
but Tables S2 - S4, and Figs. S7 and S8 indicate that proper
integration gives much better idea about the overall cluster
structure of the data set.

D. Results on Additional Benchmark Data Sets

Apart from the results on various data sets reported in
the main paper, experiments are also carried out on four
benchmark image and social networking data sets. Among
them, Football, Olympics, and Politics-IE (http://mlg.ucd.ie/
aggregation/) are three benchmark multi-view Twitter data
sets, each of which consists of a heterogeneous collection
of nine network and content-based views [19]. Football,
Olympics, and Politics-IE consists of 248, 464, and 348
samples, respectively, and their number of clusters are 20,

http://mlg.ucd.ie/aggregation/
http://mlg.ucd.ie/aggregation/
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Fig. S7. Two-dimensional scatter plots of individual views and proposed algorithm for benchmark data sets: 3Sources (top row) and BBC (bottom row).
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Fig. S8. Two-dimensional scatter plots of individual views and proposed algorithm for multi-omics cancer data sets: LGG (top row) and STAD (bottom
row).

28, and 7, respectively. The other data set Flower-17 is a 17
category flower image data set with 80 images for each class,
adding up to 1360 samples. Seven dissimilarity matrices, based
on chi-squared distance, are publicly available for this data set
at http://www.robots.ox.ac.uk/vgg/data/flowers/17/. The per-
formance of the proposed MiMIC algorithm on these four
data sets is compared with that of their two best individual
views according to clustering accuracy, the two individual
manifolds, namely, k-means and Stiefel manifolds, and with
the performance at rank r = k, the number of clusters in the
data set.

The comparative results are provided in Table S5. The
results in Table S5 show that the proposed algorithm sig-
nificantly outperforms the best performing individual views
as well as both k-means and Stiefel manifolds, for all three
Twitter data sets, namely, Football, Olympics, and Politics-
IE. For the Flower-17 image data set, the k-means manifold
marginally outperforms the proposed algorithm, which could
also be due to the randomized k-means clustering step in

both the cases. The comparative performance of rank k and
optimal rank r?, in case of the proposed algorithm, in Table
S5 shows that rank r? performance dominates over rank k
performance for all data sets. This indicates that the optimal
rank r? preserves better cluster structure compared to rank k.

E. Choice of Damping Factor in Joint Laplacian
The joint Laplacian LrJoint, defined in (7) of the main

paper, is a convex combination of the individual approximate
graph Laplacians. The convex combination is set according
to Section S3. In the convex combination, the Laplacians are
weighted according to the relevance of the cluster information
provided by the corresponding views. The relevance measure
χ in (33) gives a linear ordering of the views based on the
quality of their underlying cluster structure. Based on this
ordering, the relevance values are damped by powers of ∆ and
then used in the convex combination. This damping strategy
upweights the contribution of views with better cluster struc-
ture, while damping the effect of those having poorer structure.

http://www.robots.ox.ac.uk/vgg/data/flowers/17/
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TABLE S5
COMPARATIVE PERFORMANCE ANALYSIS OF PROPOSED AND EXISTING ALGORITHMS ON ADDITIONAL BENCHMARK DATA SETS

Data Algorithm� Best 2nd Best Rank k
k-Means Stiefel MiMICSet View View Manifold Manifold

Fl
ow

er
-1

7 Accuracy 0.3529(1.44e-2) 0.3495(3.78e-3) 0.5367(8.94e-3) 0.5681(1.35e-3) 0.3441(4.24e-3) 0.5625(1.32e-2)
NMI 0.4015(1.02e-2) 0.3696(4.13e-3) 0.5364(6.20e-3) 0.5840(4.44e-3) 0.3915(2.60e-3) 0.5821(5.59e-3)
ARI 0.1905(1.30e-2) 0.1789(2.97e-3) 0.3459(7.38e-3) 0.4110(7.62e-3) 0.1805(4.27e-3) 0.4002(6.50e-3)
F-measure 0.3982(1.77e-2) 0.3968(2.94e-3) 0.5532(8.04e-3) 0.6056(8.52e-3) 0.3749(3.50e-3) 0.6003(8.74e-3)

Fo
ot

ba
ll Accuracy 0.7419(1.86e-2) 0.6737(1.25e-2) 0.7915(4.76e-2) 0.8673(1.14e-2) 0.7366(1.09e-2) 0.8846(2.27e-2)

NMI 0.7910(1.03e-2) 0.7432(1.05e-2) 0.8408(3.41e-2) 0.8804(9.42e-3) 0.7742(6.64e-3) 0.8958(1.24e-2)
ARI 0.5814(3.46e-2) 0.4531(4.89e-2) 0.6699(8.24e-2) 0.7566(2.51e-2) 0.5584(1.63e-2) 0.7841(4.61e-2)
F-measure 0.7757(1.49e-2) 0.6887(1.21e-2) 0.8159(3.97e-2) 0.8792(9.90e-2) 0.7610(9.99e-3) 0.8941(1.74e-2)

O
ly

m
pi

cs Accuracy 0.8187(1.62e-2) 0.7793(8.92e-3) 0.8625(2.14e-2) 0.8228(2.88e-2) 0.7390(2.04e-2) 0.8844(2.60e-2)
NMI 0.8763(5.10e-3) 0.8249(8.50e-3) 0.9223(8.63e-3) 0.9141(1.08e-2) 0.8075(1.05e-2) 0.9394(9.10e-3)
ARI 0.7504(3.39e-2) 0.6591(2.59e-2) 0.8267(3.27e-2) 0.7890(6.58e-2) 0.5474(2.64e-2) 0.8699(3.52e-2)
F-measure 0.8367(1.67e-2) 0.8037(9.98e-3) 0.8813(1.62e-2) 0.8520(2.87e-2) 0.7699(1.82e-2) 0.9006(2.35e-2)

Po
lit

ic
s-

IE Accuracy 0.9080(0.0) 0.8508(4.16e-3) 0.8810(1.27e-2) 0.8764(0.0) 0.8048(3.30e-2) 0.9436(1.45e-2)
NMI 0.8537(0.0) 0.7337(1.59e-3) 0.8137(1.46e-2) 0.8246(�0) 0.6884(2.63e-2) 0.8573(1.88e-2)
ARI 0.9162(0.0) 0.6703(6.08e-3) 0.7978(2.80e-2) 0.7408(0.0) 0.7096(3.17e-2) 0.8693(2.81e-2)
F-measure 0.9079(0.0) 0.8293(4.77e-3) 0.8651(1.50e-2) 0.8662(0.0) 0.7988(3.18e-2) 0.9447(1.21e-2)

TABLE S6
PERFORMANCE OF THE MIMIC ALGORITHM FOR DIFFERENT VALUES OF DAMPING FACTOR ∆ ON BENCHMARK AND MULTI-OMICS DATA SETS

Measure ∆ = 1 ∆ = 2 ∆ = 1 ∆ = 2 ∆ = 1 ∆ = 2 ∆ = 1 ∆ = 2

B
en

ch
m

ar
k Rank

D
ig

its

12 42

3S
ou

rc
es

21 26
B

B
C

21 5

10
0L

ea
ve

s 180 50
Accuracy 0.9207(4.21e-4) 0.7860(0.0) 0.7360(5.92e-2) 0.6520(3.74e-3) 0.8715(0.0) 0.7976(3.04e-2) 0.8185(1.55e-2) 0.6765(1.80e-2)
NMI 0.8597(4.88e-4) 0.8275(�0) 0.6433(3.59e-2) 0.6224(8.33e-3) 0.7182(�0) 0.6658(4.01e-2) 0.9302(4.12e-3) 0.8499(6.61e-3)
ARI 0.8352(8.18e-4) 0.7367(0.0) 0.5957(6.69e-2) 0.5225(1.34e-2) 0.7273(0.0) 0.7027(6.04e-2) 0.7431(2.53e-2) 0.5715(2.10e-2)
F-measure 0.9209(4.15e-4) 0.8428(0.0) 0.7581(5.04e-2) 0.6941(3.91e-3) 0.8613(0.0) 0.8127(3.42e-2) 0.8492(1.13e-2) 0.7067(1.46e-2)

M
ul

ti-
O

m
ic

s Rank

B
R

C
A

40 4

L
G

G

45 43

ST
A

D

25 16

L
U

N
G

4 3
Accuracy 0.6683(0.0) 0.7964(0.0) 0.9700(0.0) 0.9625(0.0) 0.7727(0.0) 0.7727(0.0) 0.9388(0.0) 0.9463(0.0)
NMI 0.4503(�0) 0.5553(�0) 0.8646(�0) 0.8543(�0) 0.5183(�0) 0.5220(�0) 0.6920(0.0) 0.7173(0.0)
ARI 0.3894(0.0) 0.5474(0.0) 0.9097(0.0) 0.8790(0.0) 0.4658(0.0) 0.4650(0.0) 0.7701(0.0) 0.7965(0.0)
F-measure 0.6800(0.0) 0.7997(0.0) 0.9700(0.0) 0.9623(0.0) 0.7791(0.0) 0.7830(0.0) 0.9385(0.0) 0.9461(0.0)

With damping factor ∆ = 1, the individual contributions are
relatively close to each other depending upon their Fiedler
values and Fiedler vectors. On the other hand, with ∆ = 2, the
contributions of the views in decreasing order of relevance are
χ(1)

2 , χ(2)

4 , χ(3)

8 , and so on. This indicates heavier damping and
higher difference between the individual contributions. The
effect of the two damping factors is studied in Table S6 for
different data sets.

Table S6 shows that for four benchmark data sets, namely,
Digits, 3Sources, BBC, and 100Leaves, lower damping (∆ =
1) gives better performance compared to higher damping
(∆ = 2). The individual views of the benchmark data sets
are relatively similar to each other, for instance, different
segments of the same news article for the BBC data set, and
RGB and HSV colour histograms of same image for ALOI
data set. As a result, lower damping works better for the
benchmark data sets. For the multi-oimcs data sets, however,
Table S6 shows that heavier damping with ∆ = 2 gives
better performance. Table S4 shows that there is a significant
difference between the clustering performance of the most and
the second most relevant views of LGG, BRCA, and LUNG
data sets. Hence, significantly upweighting the most relevant
view with ∆ = 2 gives better performance for the multi-oimcs
data sets. Therefore, in this work, the damping factor ∆ is

chosen to be 2 for the multi-omics data sets, and 1 for the
benchmark data sets.

S7. CLUSTER EVALUATION MEASURES

Four external cluster evaluation measures are used to com-
pare the performance different approaches, namely, accuracy,
adjusted rand index (ARI), normalized mutual information
(NMI), and F-measure. Since there are different definitions of
some of the measures, like accuracy and NMI, in clustering,
the definitions used in this work is are described next. A
higher value indicates a better performance for each metric.
Let T = {t1, . . . , tj , . . . , tk} be the true partition of n samples
of a data set into k clusters. Let C = {c1, . . . , ci, . . . , ck}
be the k clusters returned by a clustering algorithm. Let the
number of samples in the data set be denoted by n. The
external evaluation indices measure how close is the clustering
C with respect to true partition T . The four external evaluation
indices are as follows.

1) Accuracy [20]: Given a sample xp , let its cluster and
class labels be denoted by cp and tp, respectively. The
clustering accuracy is given by

Accuracy =
1

n

n∑
p=1

δ(tp,map(cp)),
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where δ(a, b) = 1 when a = b, otherwise δ(a, b) = 0.
The function map(cp) is the permutation map function,
which maps the cluster labels into class labels. The best
map can be obtained by the Kuhn-Munkres algorithm
[21].

2) NMI [22] measures the concordance of cluster assign-
ments in T and C. NMI is defined as follows:

NMI(T , C) =
2 I (T , C)

[H(T ) + H(C)]
; (36)

where H(C) is the entropy of C and I (T , C) is the mutual
information between T and C, which are as follows:

H (C) = −
k∑
i=1

Pr(ci) logPr(ci);

I (T , C) =

k∑
i=1

k∑
j=1

Pr(ci ∩ tj) log

[
Pr(ci ∩ tj)
Pr(ci)Pr(tj)

]
;

where Pr(S) denotes the probability of the set S.
3) ARI [23] is an adjustment of the rand index, given by,

ARI (C, T ) =

k∑
i=1

k∑
j=1

(|ci∩tj |
2

)
− n3

1
2 (n1 + n2)− n3

.

where n1 =
k∑
i=1

(|ci|
2

)
, n2 =

k∑
j=1

(|tj |
2

)
, n3 = 2n1n2

n(n−1) .

4) F-measure [24] of a cluster ci with respect to a class
tj evaluates how well cluster cluster ci describes class
tj and is given by the harmonic mean of precision and
recall.

Precision Pij =
|ci ∩ tj |
|ci|

.

Recall Rij =
|ci ∩ tj |
|tj |

.

F-measure F(tj , ci) =
2PijRij
Pij +Rij

=
2|ci ∩ tj |
|ci|+ |tj |

.

The overall F-measure is given by the weighted average
of the maximum F-measure over the clusters in C.

F-measure (C, T ) =
1

n

k∑
j=1

nj max
i
{F(tj , ci)},

where nj denotes the number of points in class tj .
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